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Challenges 

 Estimate the application resource needs 

 Allocate the needed resources 

 Manage applications and resources during run, adapt 

allocations, or intervene on behalf of the resources 

Goal: “make it easier for scientists to execute large-scale 

computational tasks that use the power of computing resources 

they do not own to process data they did not collect with 

applications they did not develop” 
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Experimental Foundation 

 Real-world applications  

– Sets of tasks and workflows managed by workflow 

management systems (Pegasus and Makeflow) 

 State of the art computing capabilities—Argonne Leadership 

Computing Facility  and Open Science Grid 

 Campus resources at ND, UCSD and UW  

 Commercial cloud services 

 Experimentation from the point of view of a scientist:  “submit 

locally and compute globally”  

 Pay attention to the cost involved in acquiring the resources and 

the human effort involved in software and data deployment and 

application management 

– Automate as much as possible 
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Approach 
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HTC Monitoring 

 Job wrappers that collect information about processes 

– Runtime, peak disk usage, peak memory usage, CPU usage, etc. 

 Mechanisms 

– Polling (not accurate, low overhead) 

– ptrace() system call interposition (accurate, high overhead) 

– LD_PRELOAD library call interposition (accurate, low overhead) 

 Kickstart (Pegasus) and resource-monitor (Makeflow) 

Gideon Juve, et al., Practical Resource Monitoring for Robust High 

Throughput Computing, University of Southern California, Technical Report 

14-950, 2014. 

  Polling LD_PRELOAD Ptrace (syscalls) 

CPU 0.5% - 12% 0.5% - 5% < 0.2% 

Memory 2% - 14% < 0.1% ~ 0% 

I/O 2% - 20% 0% 0% 

  Polling LD_PRELOAD Ptrace (syscalls) 

CPU low low low 

Memory low medium medium 

I/O low low high 

Error (Accuracy) 

Overhead 
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HPC Monitoring (ALCF) 

 Job information from scheduler (Cobalt) 
– Use scheduler data for both scheduler and individual task data 

– Job runtime, number of cores, user estimates, etc. 

 I/O using Darshan 
– Instrumentation automatically linked into codes at compile time 

– Captures POSIX I/O, MPI I/O and some HDF5 and NetCDF 
functions 

– Amount read/written, time in I/O, files accessed, etc. 

– Very low overhead in both time and memory 

 Performance Counters using AutoPerf 
– Using built-in hardware performance counters 

– Also enabled at compile time 

– Counters zeroed in MPI_Init, and reported in MPI_Finalize 

– FLOPs, cache misses, etc. 

– Users can take control of performance counters preventing this 
from working 

 
7 



Building resource archives 
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Execution Monitoring 

Workload Archive 

dV/dt Execution Traces 



Resources Archive  

● The resource summary archive captures the information gathered by 
our monitoring tools 

● The archive is publicly readable at http://dvdt.crc.nd.edu. 

o Build on top of the content management system Drupal and custom 
PHP and python code 

o Database backend running MySQL.  

● Users of the archive can submit sets of resources summaries through a 
web interface, or with a batch job using ssh keys for authentication 

● The archive can be queried to produce task summaries that match 
conditions, such as task name, monitoring tool used, and resource values 
comparisons 



Resources Archive - Workflows per User 



Resources Archive - One Workflow 



Workload Modeling and Characterization 

 

 

 

 

 

 

 

 

 

Workload 

Characterization 
Workload Archive 

dV/dt 
Workload 

Estimation 



13 

Context 
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• Methods assume that accurate estimations are available 
 

• A successful workflow execution mainly depends on how tasks 

are planned and executed 

 

• We propose a method to estimate fine-grained task 

characteristics online  

Scheduling and 
Resource Provisioning 

Algorithms 

Task Characteristics: 
Runtime 

Disk Space 
Memory Consumption 
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Scientific Workflows 
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• Directed Acyclic Graph (DAG) 

• Nodes denote tasks 

• Edges denote task dependencies 

 

Montage Workflow Epigenomics Workflow 

Periodogram Workflow 

...

...

...

aligment_to_reference

sort_sam

dedup

add_replace

realing_target_creator

indel_realing

haplotype_caller

genotype_gvcfs

combine_variants

select_variants_indel

filtering_indel

select_variants_snp

filtering_snp

merge_gvcfs

Rosetta Workflow 

SoyKB Workflow 
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Workflow Execution Profiling 
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Task estimation could be based on mean values 

Task estimation based on average may lead 

to significant estimation errors 
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Based on Regression Trees 
Built offline from historical data 
analyses 

 

 

1. If the data is already correlated 
(e.g., input data and runtime, or input 
data and output data), no clustering is 
performed and predictions are done 
based on the correlation ratio 

2. If not, clustering is performed to 
increase the probability of having 
subsets where the data is correlated 

3. If the clustering results in 
correlated subsets, the ratio is used 
to perform predictions (as in step 1) 

4. If no correlation can be found after 
clustering, the algorithm tries to 
identify probability distributions that 
would describe the subset 

Task Estimation Process: Estimate task resource 

needs based on input data size 
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• Based on the MAPE-K loop 

• Task executions are constantly 

monitored 

• Estimated values are updated, and a 

new prediction is performed 

Online Estimation Process 
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• Trace analysis of 5 workflow applications 

 

• Evaluate the accuracy of our online estimation process 

• Offline: estimation based on a-priori knowledge 

• Online-m: estimation based on the median value 

• Online-p: estimation based on probability distributions 

• Uses the Kolmogorov-Smirnov test (K-S test) to compare empirical data to 

standard distributions 

Experiment Conditions 
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Experimental Results: SoyKB Workflow 
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Online Process - Median 

Avg. Runtime Error: 20% 

Avg. I/O Write Error: 11% 

Avg. Memory Error: 14% 

 

Online Process – 

Probability Distribution 

Avg. Runtime Error: 13% 

Avg. I/O Write Error: 8% 

Avg. Memory Error: 11% 

Offline Process 

Avg. Runtime Error: 49% 

Avg. I/O Write Error: 55% 

Avg. Memory Error: 57% 

Poor output data estimations 

leads to a chain of estimation 

errors in scientific workflows 



Provisioning and Resource Allocation 

Resource 

Allocation 
Execution Monitoring 

dV/dt 
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Resource Allocation  

• Tasks have different sizes (known at runtime) while 

computation nodes have fixed sizes  

 

 

 

 

• Resource allocation strategies 

• One task per node 

 Resources are underutilized 

 Throughput is reduced 

• Many tasks per node 

 Resources are exhausted 

 Jobs fail 

 Throughput is reduced 

Tasks Computation Nodes 

21 
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General Approach 

• Setting tasks 

• What do we know? 

 Maximum size? 

 Size probability distribution? 

 Empirical distribution? 

 dV/dt Prediction information? 

 

• Our approach 

• Setting task sizes to reduce resource 

waste 

 Modeling of resource sizes (e.g., memory, 

disk, or network bandwidth) 

 Assumes the task size distribution is known 

 Adapts to observed behavior 

Success 

Task of unknown size 

Compute some task size 

Run the task in a node 

with the available space. 

Monitor task, and kill it if 

resources exceeded 

Record result Record failure 

Failure 

Already max size 
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Synthetic Workload Experiment 

• Exponential Distribution 

• 5000 Tasks 

• Memory according to an 

exponential distribution 

 min 10 MB, max 100 MB, average 

20 MB 

• Tasks run anywhere from 10 to 20 

seconds 

• 100 computation nodes available, 

from ND Condor pool 

• Each node with 4 cores and a limit 

of 100 MB of memory 
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Example: One, Two and Multi-step allocations 
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normalized resource 

units per task  

(less is better) 

multi-step, many-step 

allocation, several 

allocations are computed per 

task. First allocation is 

conservative. If one 

allocation fails, another one 

is tried 

one-step (always max) 

                     two-step, each task first runs with some 

computed allocation (aggressive). If the task fails because 

of resources exhaustion, it is rerun with the maximum 

allowed.  
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dV/dt Products  

 Monitoring tools: 

– kickstart and resource-monitor, support different monitoring 

methods: ptrace system call interposition, library interposition, 

polling, support different levels of monitoring information, workflow 

system independent 

 Workflow archive: 

– Sets of various types workflows with detailed performance 

information 

– Ongoing data collection effort 

 Methods: 

– Online resource need estimation using regression trees and data 

clustering techniques 

– Dynamic resource allocation using runtime behavior information 
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Next Steps 
 Enhance monitoring and modeling 

– Extend modeling to HPC applications 

– Investigate energy consumption  

 Close the loop 

– Use resource predictions for provisioning and scheduling 

– Improve automation of entire loop 

– Conduct end-to-end experiments with real workloads 

 Productize tools 

– Turn modeling software into a service 
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